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P R E FAC E

Through study of this text, the reader will develop a 
comprehensive understanding of the basic techniques of 
modern analog electronic circuit design. Even though 
most readers may not ultimately be engaged in the design 
of integrated circuits (ICs) themselves, a thorough un-
derstanding of the internal circuit structure of ICs is pre-
requisite to avoiding many pitfalls that prevent the 
effective and reliable application of integrated circuits in 
system design.

The writing integrates the authors’ extensive indus-
trial backgrounds in precision analog and digital design 
with their many years of experience in the classroom. A 
broad spectrum of topics is included, and material can 
easily be selected to satisfy either a two-semester or three-
quarter sequence in electronics.

In order to reduce the length, cost, and weight of the 
text, the digital electronics chapters from earlier editions 
have been included as supplemental chapters in the e-book 
version of the textbook that is available in Connect.

IN THIS EDITION
This edition continues to update the material to achieve 
improved readability and accessibility to the student. In 
addition to general material updates, a number of specific 
changes have been included.

The five chapters of Part One have been reorganized 
to improve material flow. Chapter 4, “Bipolar Junction 
Transistors” now follows directly after the diode chapter, 
and “Field-Effect Transistors” becomes Chapter 5. A new 
low-power, low-voltage, and weak inversion thread begins 
in Part One. Chapter 5 specifically introduces the behavior 
and modeling of the FET in the moderate and weak inver-
sion regions, and this thread continues throughout Parts 
Two and Three.

Other important elements include:
At least 30 percent revised or new problems.
Updated PowerPoint slides are available from the 

authors at www.JaegerBlalock.com or Connect.

Popular digital features can be found through 
McGraw Hill Education’s Connect platform, 
details of which can be found later in the Preface.

The structured problem-solving approach continues 
throughout the examples.

Popular Electronics in Action features have been 
revised and expanded to include IEEE Societies, 
Historical Development of SPICE, Body Sensor 
Networks, Jones Mixer, Advanced CMOS Tech-
nology, Fully Differential Amplifiers, and DACs 
and ADCs to name a few.

Chapter openers enhance the reader’s understanding 
of historical developments in electronics. Design notes 
highlight important ideas that the circuit designer should 
remember. The Internet is viewed as an integral extension 
of the text.

Features of the book are outlined below.
The Structured Problem-Solving Approach is used 

throughout the examples.
Electronics in Action features in each chapter.
Chapter openers highlighting developments in the 

field of electronics.
Design Notes and emphasis on practical circuit 

design.
Broad use of SPICE throughout the text, examples, 

and problems.
Integrated treatment of device modeling in SPICE.
Numerous Exercises, Examples, and Design 

 Examples.
Large number of problems.
Integrated web materials.

Part Two consists of Chapters 6 through 9 and begins 
with an overview of general amplifier characteristics, fol-
lowed by small-signal modeling of transistors and com-
prehensive discussion of classical single-stage amplifier 
design including frequency response.

xx
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The first three chapters of Part Three focus on ideal 
and nonideal operational amplifiers, including feedback 
and amplifier stability. The last three chapters concentrate 
on analog integrated circuit design and design techniques.

DESIGN
Design remains a difficult issue in educating engineers. 
The use of the well-defined problem-solving methodol-
ogy presented in this text can significantly enhance the 
students ability to understand issues related to design.  
The design examples assist in building an understanding 
of the design process.

Methods for making design estimates and decisions are 
stressed throughout the analog portion of the text. Expres-
sions for amplifier behavior are simplified beyond the stan-
dard hybrid-pi model expressions whenever appropriate. 
For example, the expression for the voltage gain of an am-
plifier in most texts is simply written as ∣ A  v  ∣ =  g  m    R  L  , which 
tends to hide the power supply voltage as the fundamental 
design variable. Rewriting this expression in approximate 
form as  g  m    R  L   ≅ 10 V  CC   for the BJT, or  g  m    R  L   ≅  V  DD   for the 
FET, explicitly displays the dependence of amplifier design 
on the choice of power supply voltage and provides a sim-
ple first-order design estimate for the voltage gain of the 
common-emitter and common-source amplifiers. The gain 
advantage of the BJT stage is also clear. These approxima-
tion techniques and methods for performance estimation 
are included as often as possible. Comparisons and design 
tradeoffs between the properties of BJTs and FETs are in-
cluded throughout Part Three.

Worst-case and Monte-Carlo analysis techniques are 
introduced at the end of the first chapter. These are not 
topics traditionally included in undergraduate courses. 
However, the ability to design circuits in the face of wide 
component tolerances and variations is a key component 
of electronic circuit design, and the design of circuits us-
ing standard components and tolerance assignment are 
discussed in examples and included in many problems.

PROBLEMS AND INSTRUCTOR SUPPORT
Specific design problems, computer problems, and SPICE 
problems are included at the end of each chapter. Design 
problems are indicated by , computer problems are 
 indicated by , and SPICE problems are indicated by . 
The problems are keyed to the topics in the text with the 
more difficult or time-consuming problems indicated by * 
and **. An Instructor’s Manual containing solutions to all 
the problems is available to instructors from the authors. 
In addition, the graphs and figures are available as 

PowerPoint files and can be retrieved on the Instructor’s 
Resources section of Connect, along with various web 
materials referenced in the textbook for students. Instruc-
tor notes are available as PowerPoint slides.

To access the Instructor Resources through Connect, 
you must first contact your McGraw Hill Learning Tech-
nology Representative to obtain a password. If you do not 
know your McGraw Hill representative, please go to 
www.mhhe.com/rep, to find your representative.

Once you have your password, please go to connect.
mheducation.com, and log in. Click on the course for 
which you are using Microelectronic Circuit Design, 6e. If 
you have not added a course, click “Add Course,” and  select 
“Engineering-Electrical and Computer” from the drop-
down menu. Select this textbook and click “Next.”

Once you have added the course, click on the “Library” 
link, and then click “Instructor Resources.”

ACKNOWLEDGMENTS
We want to thank the large number of people who have had 
an impact on the material in this text and on its preparation. 
Our students have helped immensely in polishing the man-
uscript and have managed to survive the many revisions of 
the manuscript. Our department heads, J. D. Irwin and 
Mark Nelms of Auburn University, N. Sidiropoulos of 
the University of Virginia and Gregory Peterson of the 
University of Tennessee, have always been highly supportive 
of faculty efforts to develop improved texts.

We want to thank all reviewers, including the following:

Stanley Burns University of Minnesota, Duluth

Numan Dogan North Carolina Agricultural and  
  Technical State University

Melinda Holtzman Portland State University

Bradley Jackson California State University,  
  Northridge

Serhiy Levkov New Jersey Institute of  
  Technology

Jayne Wu (Jie Wu) The University of Tennessee,  
  Knoxville

We are also thankful for inspiration from the classic 
text Applied Electronics by J. F. Pierce and T. J. Paulus. 
Professor Travis Blalock Learned Electronics from 
 Professor Pierce many years ago and still appreciates 
many of the analytical techniques employed in their long 
out-of-print text.

Those familiar with Professor Don Pederson’s  
“Yellow Peril” will see its influence throughout this text. 
Shortly after Professor Jaeger became Professor Art 

ISTUDY



xxii Preface

 Brodersen’s student at the University of Florida, he was 
fortunate to be given a copy of Pederson’s book to study 
from cover to cover.

Finally, we want to thank the team at McGraw Hill, 
including Theresa Collins and Erin Kamm, Product Devel-
opers; Jane Mohr, Content Project Manager; Lisa Granger,  
Marketing Manager; and Sadika Rehman, Full-Service 
Project Manager.

In developing this text, we have attempted to integrate 
our industrial backgrounds in analog and digital design 
with many years of experience in the classroom. We hope 

we have at least succeeded to some extent. Constructive 
suggestions and comments will be appreciated.

Richard C. Jaeger 
Auburn University 

Travis N. Blalock 
University of Virginia

Benjamin J. Blalock
University of Tennessee, Knoxville

ISTUDY



C H A P T E R - BY- C H A P T E R  S U M M A R Y

PART ONE—SOLID-STATE ELECTRONICS 
AND DEVICES
Chapter 1 provides a historical perspective on the field of 
electronics beginning with vacuum tubes and advancing to 
Tera-scale integration and its impact on the global economy. 
Chapter 1 also provides a classification of electronic signals 
and a review of some important tools from network analysis, 
including the ideal operational amplifier. Because develop-
ing a good problem-solving methodology is of such import 
to an engineer’s career, the comprehensive Structured Prob-
lem Solving Approach is used to help students develop their 
problem solving skills. The structured approach is discussed 
in detail in the first chapter and used in the subsequent ex-
amples in the text. Component tolerances and variations 
play an extremely important role in practical circuit design, 
and Chapter 1 closes with introductions to tolerances, tem-
perature coefficients, worst-case design, and Monte Carlo 
analysis.

Chapter 2 discusses semiconductor materials 
 including the covalent-bond and energy-band models of 
semiconductors. The chapter includes material on 
 intrinsic carrier density, electron and hole populations, 
n- and p-type material, and impurity doping. Mobility, 
resistivity, and carrier transport by both drift and 
 diffusion are included as topics. Velocity saturation is 
discussed, as well as an introductory discussion of micro-
electronic fabrication.

Chapter 3 introduces the structure and i-v characteris-
tics of solid-state diodes. Discussions of Schottky diodes, 
variable capacitance diodes, photo-diodes, solar cells, and 
LEDs are also included. This chapter introduces the concepts 
of device modeling and the use of different levels of model-
ing to achieve various approximations to reality. The SPICE 
model for the diode is discussed. The concepts of bias, oper-
ating point, and load-line are all introduced, and iterative 
mathematical solutions are also used to find the operating 
point with MATLAB and spreadsheets. Diode applications 
in rectifiers are discussed in detail and a discussion of the 
dynamic switching characteristics of diodes is also presented.

Chapter 4 introduces the bipolar junction transistor 
and presents a heuristic development of the transport 
(simplified Gummel-Poon) model of the BJT based upon 
superposition. The various regions of operation are dis-
cussed in detail. Common-emitter and common-base cur-
rent gains are defined, and base transit-time, diffusion 
capacitance, and cutoff frequency are all discussed. Bipo-
lar technology and physical structure are introduced. The 
four-resistor bias circuit is discussed in detail. The SPICE 
model for the BJT and SPICE model parameters are also 
discussed in Chapter 4.

Chapter 5 discusses MOS and junction field-effect 
transistors, starting with a qualitative description of the 
MOS capacitor. Models are developed for the FET i-v 
characteristics, and a complete discussion of the regions 
of operation of the device is presented. Body effect is in-
cluded. MOS transistor performance limits—including 
scaling, cut-off frequency, and subthreshold conduction—
are discussed as well as basic Λ-based layout methods. 
Biasing circuits and load-line analysis are presented. The 
concept of velocity saturation from Chapter 2 is reinforced 
with the addition of the unified MOS model of Rabaey 
and Chandrakasan to Chapter 5. FET SPICE models and 
model parameters are discussed in Chapter 5. In the 6th 
edition, the discussion of moderate and weak inversion is 
expanded, and a low voltage/weak inversion thread con-
tinues through the rest of the text.

PART TWO—ANALOG ELECTRONICS
Chapter 6 provides a succinct introduction to analog elec-
tronics. The concepts of voltage gain, current gain, and 
power gain are developed using two-port circuit models. 
Much care has been taken to be consistent in the use of the 
notation that defines these quantities as well as in the use 
of dc, ac, and total signal notation throughout the book. 
Bode plots are reviewed and amplifiers are classified by 
frequency response. MATLAB is utilized as a tool for pro-
ducing Bode plots. SPICE simulation using built-in 
SPICE models is introduced.

xxiii
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xxiv Chapter-by-Chapter Summary

Chapter 7 begins the general discussion of linear am-
plification using the BJT and FET as C-E and C-S amplifi-
ers. Biasing for linear operation and the concept of 
small-signal modeling are both introduced, and small-signal 
models of the diode, BJT, and FET are all developed. The 
limits for small-signal operation are all carefully defined. 
The use of coupling and bypass capacitors and inductors to 
separate the ac and dc designs is explored. The important 
10VCC and VDD design estimates for the voltage gain of the 
C-E and C-S amplifiers are introduced, and the role of the 
transistor’s intrinsic gain in bounding circuit performance is 
discussed. The role of Q-point design on power dissipation 
and signal range is also introduced.

Chapter 8 proceeds with an in-depth comparison of 
the characteristics of single-transistor amplifiers, including 
small-signal amplitude limitations. Appropriate points for 
signal injection and extraction are identified, and amplifi-
ers are classified as inverting amplifiers (C-E, C-S), nonin-
verting amplifiers (C-B, C-G), and followers (C-C, C-D). 
The treatment of MOS and bipolar devices is merged from 
Chapter 8 on, and design tradeoffs between the use of the 
BJT and the FET in amplifier circuits is an important 
thread that is followed through all of Part Two. A detailed 
discussion of the design of coupling and bypass capacitors 
and the role of these capacitors in controlling the low fre-
quency response of amplifiers appears in this chapter.

Chapter 9 discusses the frequency response of analog 
circuits. The behavior of each of the three categories of 
single-stage amplifiers (C-E/C-S, C-B/C-G, and C-C/C-
D) is discussed in detail, and BJT behavior is contrasted 
with that of the FET. The frequency response of the tran-
sistor is discussed, and the high frequency, small-signal 
models are developed for both the BJT and FET. Miller 
multiplication is used to obtain estimates of the lower and 
upper cutoff frequencies of complex multistage amplifi-
ers. Gain-bandwidth products and gain-bandwidth trad-
eoffs in design are discussed. Cascode amplifier frequency 
response, and tuned amplifiers are included in this chap-
ter. The important short-circuit and open-circuit time-con-
stant techniques for estimating the dominant low- and 
high-frequency poles are covered in detail.

Because of the renaissance and pervasive use of RF 
circuits, Chapter 9 includes an introductory section on RF 
amplifiers, including shunt peaked and tuned amplifiers. 
A discussion of gate resistance in FETs mirrors that of 
base resistance in the BJT. The discussion of the impact of 
the frequency-dependent current gain of the FET includes 
both the input and output impedances of the source fol-
lower configuration. Material on mixers includes passive 
and active single- and double-balanced mixers and the 
widely used Jones Mixer.

PART THREE—OPERATIONAL AMPLIFIERS 
AND FEEDBACK
Chapter 10 reviews classic ideal operational amplifier 
circuits that include the inverting, noninverting, summing, 
and difference amplifiers as well as the integrator, differ-
entiator, and low-pass and high-pass filters.

Chapter 11 focuses on a comprehensive discussion 
of the characteristics and limitations of real operational 
amplifiers, including the effects of finite gain and input 
resistance, nonzero output resistance, input offset voltage, 
input bias and offset currents, output voltage and current 
limits, finite bandwidth, and common-mode rejection. A 
consistent loop-gain analysis approach is used to study the 
four classic feedback configurations, and Blackman’s the-
orem is utilized to find input and output resistances of 
closed-loop amplifiers. The important successive voltage 
and current injection technique for finding loop-gain is 
included in Chapter 11. Stability of first-, second-, and 
third-order systems is discussed, and the concepts of phase 
and gain margin are introduced. Relationships between 
Nyquist and Bode techniques are explicitly discussed. A 
section concerning the relationship between phase margin 
and time domain response is included. The macro model 
concept is introduced and the discussion of SPICE simula-
tion of op-amp circuits using various levels of models 
continues in Chapter 11.

Chapter 12 covers a wide range of operational am-
plifier applications that include multistage amplifiers, 
the instrumentation amplifier, and continuous time and 
discrete time active filters. Cascade amplifiers are in-
vestigated including a discussion of the bandwidth of 
multistage amplifiers. An introduction to D/A and A/D 
converters appears in this chapter. The Barkhausen crite-
rion for oscillation are presented and followed by a discus-
sion of op-amp-based sinusoidal oscillators. High frequency 
oscillators are discussed in Chapter 15. Nonlinear circuits 
applications including rectifiers, Schmitt triggers, and mul-
tivibrators conclude the material in Chapter 12.

Chapter 13 explores the design of multistage direct 
coupled amplifiers. An evolutionary approach to multi-
stage op amp design is used. MOS and bipolar differential 
amplifiers are first introduced. Subsequent addition of a 
second gain stage and then an output stage convert the dif-
ferential amplifiers into simple op amps. Class A, B, and 
AB operations are defined. Electronic current sources are 
designed and used for biasing of the basic operational 
 amplifiers. Discussion of important FET-BJT design 
 tradeoffs are included wherever appropriate. Additional 
low voltage/weak inversion problems have been added to 
Chapters 13, 14, and 15.
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Chapter 14 introduces techniques that are of particu-
lar import in integrated circuit design. A variety of current 
mirror circuits are introduced and applied in bias circuits 
and as active loads in operational amplifiers. A wealth of 
circuits and analog design techniques are explored through 
the detailed analysis of the classic 741 operational ampli-
fier. The Brokaw bandgap reference and Gilbert analog 
multiplier as well as the MOS weak inversion reference 
are introduced in Chapter 14.

Chapter 15 presents detailed examples of feedback 
as applied to transistor amplifier circuits. The loop-gain 
analysis approach introduced in Chapter 11 is used to find 
the closed-loop gain of various amplifiers, and Black-
man’s theorem is utilized to find input and output resis-
tances of closed-loop amplifiers.

Amplifier stability is also discussed in Chapter 15, 
and Nyquist diagrams and Bode plots (with MATLAB) are 
used to explore the phase and gain margin of amplifiers. 
Basic single-pole op-amp compensation is discussed, and 
the unity gain-bandwidth product is related to amplifier 

slew rate. Design of op-amp compensation to achieve a 
desired phase margin is presented. The discussion of 
 transistor oscillator circuits includes the classic Colpitts, 
Hartley, and negative Gm configurations. Crystal oscillators, 
ring oscillators and a discussion of positive feedback  
in flip-flops are also included.

The Digital Electronics chapters from the fifth edition 
are now included as supplemental chapters in the e-book 
version of this text, which is available to users of this edition 
through Connect.

Four Appendices include tables of standard compo-
nent values (Appendix A), summary of the device models 
and sample SPICE parameters (Appendix B), review of 
two-port networks (Appendix C), and Physical Constants 
and Transistor Model Summary (Appendix D). Data sheets 
for representative solid-state devices and operational am-
plifiers are available via the Internet. A table in Appendix 
C helps relate various two-port parameters that often ap-
pear in specification sheets to the FET and BJT model 
parameters that appear in the text.
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Figure 1.1 John Bardeen, William Shockley, and Walter 
Brattain in Brattain’s laboratory in 1948.
Reprinted with permission of Alcatel-Lucent USA Inc.

Figure 1.2 The first germanium bipolar transistor.
Reprinted with permission of Alcatel-Lucent USA Inc.
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Chapter Goals
 • Present a brief history of electronics
 • Quantify the explosive development of integrated circuit 

technology
 • Discuss initial classification of electronic signals
 • Review important notational conventions and concepts 

from circuit theory
 • Introduce methods for including tolerances in circuit 

analysis
 • Present the problem-solving approach used in this text

November 2022 is the 75th anniversary of the 1947 dis-
covery of the bipolar transistor by John Bardeen and 
Walter Brattain at Bell Laboratories, a seminal event that 
marked the beginning of the semiconductor age (see 
Figs. 1.1 and 1.2). The invention of the transistor and the 
subsequent development of microelectronics have done 
more to shape the modern era than any other event. The 
transistor and microelectronics have reshaped how busi-
ness is transacted, machines are designed, information 
moves, wars are fought, people interact, and countless 
other areas of our lives.

This textbook develops the basic operating principles 
and design techniques governing the behavior of the 
devices and circuits that form the backbone of much of 
the infrastructure of our modern world. This knowledge 
will enable students who aspire to design and create the 
next generation of this technological revolution to build 

INTRODUCTION TO ELECTRONICS

C H A P T E R  1

a solid foundation for more advanced design courses. In 
addition, students who expect to work in some other tech-
nology area will learn material that will help them under-
stand microelectronics, a technology that will continue to 
have impact on how their chosen field develops. This 
understanding will enable them to fully exploit microelec-
tronics in their own technology area. Now let us return to 
our short history of the transistor.

After the discovery of the transistor, it was but a few 
months until William Shockley developed a theory that 
described the operation of the bipolar junction transistor. 

3
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4 Chapter 1 Introduction to Electronics

Activity in electronics began more than a century ago with the first radio transmissions in 1895 
by Marconi, and these experiments were followed after only a few years by the invention of the 
first electronic amplifying device, the triode vacuum tube. In this period, electronics—loosely 
defined as the design and application of electron devices—has had such a significant impact on 
our lives that we often overlook just how pervasive electronics has really become. One measure 
of the degree of this impact can be found in the gross domestic product (GDP) of the world. In 
2020 the world GDP was approximately U.S. $90 trillion, and of this total more than 15 percent 
was directly traceable to electronics [3–5].

We commonly encounter electronics in the form of cellular phones, radios, televisions, and 
audio equipment, but electronics can be found even in seemingly mundane appliances such as 
vacuum cleaners, washing machines, and refrigerators. Wherever one looks in industry, electron-
ics is found. The corporate world obviously depends heavily on data processing systems to man-
age its operations. In fact, it is hard to see how the computer industry could have evolved 
without the use of its own products. In addition, the design process depends ever more heavily 
on computer-aided design (CAD) systems, and manufacturing relies on electronic systems for 
process control—in petroleum refining, automobile tire production, food processing, power  
generation, and so on.

1.1 A BRIEF HISTORY OF ELECTRONICS: FROM VACUUM TUBES  
TO GIGA-SCALE INTEGRATION
Because most of us have grown up with electronic products all around us, we often lose perspec-
tive of how far the industry has come in a relatively short time. At the beginning of the twenti-
eth century, there were no commercial electron devices, and transistors were not invented until 
the late 1940s! Explosive growth was triggered by first the commercial availability of the bipo-
lar transistor in the late 1950s, and then the realization of the integrated circuit (IC) in 1961. 
Since that time, signal processing using electron devices and electronic technology has become 
a pervasive force in our lives.

Table 1.1 lists a number of important milestones in the evolution of the field of electronics. 
The Age of Electronics began in the early 1900s with the invention of the first electronic two-
terminal devices, called diodes. The vacuum diode, or diode vacuum tube, was invented by 
Fleming in 1904; in 1906 Pickard created a diode by forming a point contact to a silicon crys-
tal. (Our study of electron devices begins with the introduction of the solid-state diode in 
Chapter 3.)

Deforest’s invention of the three-element vacuum tube known as the triode was an 
extremely important milestone. The addition of a third element to a diode enabled electronic 
amplification to take place with good isolation between the input and output ports of the device. 

Only 10 years later, in 1956, Bardeen, Brattain, and 
Shockley received the Nobel Prize in physics for the dis-
covery of the transistor.

In June 1948 Bell Laboratories held a major press 
conference to announce the discovery. In 1952 Bell Lab-
oratories, operating under legal consent decrees, made 
licenses for the transistor available for the modest fee of 
$25,000 plus future royalty payments. About this time, 
Gordon Teal, another member of the solid-state group, left 
Bell Laboratories to work on the transistor at Geophysical 

Services, Inc., which subsequently became Texas Instru-
ments (TI). There he made the first silicon transistors, and 
TI marketed the first all-transistor radio. Another early 
licensee of the transistor was Tokyo Tsushin Kogyo, 
which became the Sony Company in 1955. Sony subse-
quently sold a transistor radio with a marketing strategy 
based on the idea that everyone could now have a per-
sonal radio; thus was launched the consumer market for 
transistors. A very interesting account of these and other 
developments can be found in [1, 2] and their references.
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TA B L E  1 .1
Milestones in Electronics

 YEAR EVENT

 1874 Ferdinand Braun invents the solid-state rectifier.
 1884 American Institute of Electrical Engineers (AIEE) formed.
 1895 Marconi makes first radio transmissions.
 1904 Fleming invents diode vacuum tube—Age of Electronics begins.
 1906 Pickard creates solid-state point-contact diode (silicon).
 1906 Deforest invents triode vacuum tube (audion).
 1910–1911 “Reliable” tubes fabricated.
 1912 Institute of Radio Engineers (IRE) founded.
 1907–1927 First radio circuits developed from diodes and triodes.
 1920 Armstrong invents super heterodyne receiver.
 1925 TV demonstrated.
 1925 Lilienfeld files patent application on the field-effect device.
 1927–1936 Multigrid tubes developed.
 1933 Armstrong invents FM modulation.
 1935 Heil receives British patent on a field-effect device.
 1940 Radar developed during World War II—TV in limited use.
 1947 Bardeen, Brattain, and Shockley at Bell Laboratories invent bipolar transistors.
 1950 First demonstration of color TV.
 1952 Shockley describes the unipolar field-effect transistor.
 1952 Commercial production of silicon bipolar transistors begins at Texas Instruments.
 1952 Ian Ross and George Dacey demonstrate the junction field-effect transistor.
 1956 Bardeen, Brattain, and Shockley receive Nobel Prize for invention of bipolar transistors.
 1958  Integrated circuit developed simultaneously by Kilby at Texas Instruments and Noyce and Moore at Fairchild 

Semiconductor.
 1961 First commercial digital IC available from Fairchild Semiconductor.
 1963  AIEE and IRE merge to become the Institute of Electrical and Electronic Engineers (IEEE)
 1967  First semiconductor RAM (64 bits) discussed at the IEEE International Solid-State Circuits Conference (ISSCC).
 1968  First commercial IC operational amplifier—the  μ A709—introduced by Fairchild Semiconductor.
 1970 One-transistor dynamic memory cell invented by Dennard at IBM.
 1970 Low-loss optical fiber invented.
 1971 4004 microprocessor introduced by Intel.
 1972 First 8-bit microprocessor—the 8008—introduced by Intel.
 1973 Martin Cooper demonstrated a prototype of Motorola’s handheld mobile phone.
 1974 First commercial 1-kilobit memory chip developed.
 1974 8080 microprocessor introduced.
 1978 First 16-bit microprocessor developed.
 1984 Megabit memory chip introduced.
 1985 Flash memory introduced at ISSCC.
 1987 Erbium doped, laser-pumped optical fiber amplifiers demonstrated.
 1995 Experimental gigabit memory chip presented at the IEEE ISSCC.
 2000  Alferov, Kilby, and Kromer share the Nobel Prize in physics for optoelectronics, invention of the integrated 

circuit, and heterostructure devices, respectively.
 2007  Fert and Grünberg share the Nobel Prize in physics for the discovery of giant magnetoresistance.
 2009  Kao shares one-half of the 2009 Nobel Prize in physics for fiber optic communication using light with Boyle 

and Smith for invention of the Charge-Coupled Device (CCD).
 2010  Geim and Novoaelov share the Nobel Prize in physics for groundbreaking experiments regarding the two-

dimensional material graphene.
 2014  Akasaki, Amano, and Nakamura share the Nobel Prize in physics for the invention of efficient blue light-emitting 

diodes, which has enabled bright and energy-saving white light sources.
 2018 Ten billion transistor integrated circuit chip presented at ISSCC.
 2019  Goodenough, Whittingham, and Yoshino share the Nobel Prize in chemistry for the development of lithium-ion 

batteries.
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6 Chapter 1 Introduction to Electronics

1  The term transistor is said to have originated as a contraction of “transfer resistor,” based on the voltage-controlled resistance 
of the characteristics of the MOS transistor.

Silicon-based three-element devices now form the basis of virtually all electronic systems. 
Fabrication of tubes that could be used reliably in circuits followed the invention of the triode 
by a few years and enabled rapid circuit innovation. Amplifiers and oscillators were developed 
that significantly improved radio transmission and reception. Armstrong invented the super 
heterodyne receiver in 1920 and FM modulation in 1933. Electronics developed rapidly during 
World War II, with great advances in the field of radio communications and the development 
of radar. Although first demonstrated in 1930, television did not begin to come into widespread 
use until the 1950s.

An important event in electronics occurred in 1947, when John Bardeen, Walter Brattain, 
and William Shockley at Bell Telephone Laboratories invented the bipolar transistor.      1   Although 
field-effect devices had actually been conceived by Lilienfeld in 1925, Heil in 1935, and Shockley 
in 1952 [2], the technology to produce such devices on a commercial basis did not yet exist. 
Bipolar devices, however, were rapidly commercialized.

Then in 1958, the nearly simultaneous invention of the integrated circuit (IC) by Kilby at 
Texas Instruments and Noyce and Moore at Fairchild Semiconductor produced a new technology 
that would profoundly change our lives. The miniaturization achievable through IC technology 
made available complex electronic functions with high performance at low cost. The attendant 
characteristics of high reliability, low power, and small physical size and weight were additional 
important advantages.

In 2000, Jack St. Clair Kilby received a share of the Nobel Prize for the invention of the 
integrated circuit. In the mind of the authors, this was an exceptional event as it represented one 
of the first awards to an electronic technologist.

Most of us have had some experience with personal computers, and nowhere is the impact 
of the integrated circuit more evident than in the area of digital electronics. For example, 4-gigabit 
(Gb) dynamic memory chips, similar to those in Fig. 1.3(c), contain more than 4 billion transistors. 
A 128-Gb flash memory chip stores 2 or 3 bits per memory cell using multilevel storage tech-
niques and has more than 17 billion transistors in the memory array alone, not counting address 
decoding and sensing circuitry. Creating this much memory using individual vacuum tubes 
[depicted in Fig. 1.3(a)] or even discrete transistors [shown in Fig. 1.3(b)] would be almost 
inconceivable (see Prob. 1.9).

Levels of Integration
The dramatic progress of integrated circuit miniaturization is shown graphically in Figs. 1.4 and 
1.5. The complexities of memory chips and microprocessors have grown exponentially with time. 
In over four decades since 1970, the number of transistors on a microprocessor chip has increased 
by a factor of 10 million as depicted in Fig. 1.4. Similarly, memory density has grown by a fac-
tor of more than 10 million from a 64-bit chip in 1968 to the announcement of 32-Gb chip 
production in 2018.

Since the commercial introduction of the integrated circuit, these increases in density have 
been achieved through a continued reduction in the minimum line width, or minimum feature 
size, that can be defined on the surface of the integrated circuit (see Fig. 1.5). Today most cor-
porate semiconductor laboratories around the world are actively working on deep submicron 
processes with feature sizes below 10 nm—less than one five-thousandth the diameter of a human 
hair.

As the miniaturization process has continued, a series of commonly used abbreviations 
has  evolved to characterize the various levels of integration. Prior to the invention of the inte-
grated circuit, electronic systems were implemented in discrete form. Early ICs, with fewer than 
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100 components, were characterized as small-scale integration, or SSI. As density increased, 
circuits became identified as medium-scale integration (MSI, 100–1000 components/chip), 
large-scale integration (LSI,   10   3  –  10   4   components/chip), and very-large-scale integration 
(VLSI,   10   4  –  10   9   components/chip). Today discussions focus on giga-scale integration (GSI, above   
10   9   components/chip) and beyond.

(a) (b)

(d)(c)

Figure 1.3 Comparison of (a) vacuum tubes, (b) individual transistors, (c) integrated circuits in dual-in-line packages 
(DIPs), and (d) ICs in surface mount packages.
Source: (a) Courtesy of ARRL Handbook for Radio Amateurs, 1992; (b, c, and d) Richard Jaeger
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E L E C T R O N I C S  I N  A C T I O N

Cellular Phone Evolution
The impact of technology scaling is ever present in our daily lives. One example appears 
visually in the pictures of cellular phone evolution below. Early mobile phones were often 
large and had to be carried in a relatively large pouch (hence the term “bag phone”). The 
next generation of analog phones could easily fit in your hand, but they had poor battery 
life caused by their analog communications technology. Implementations of fourth- and 
fifth-generation digital cellular technology are considerably smaller and have much longer 
battery life. As IC density increased, additional functions such as high-function cameras, 
GPS, Bluetooth, and Wifi were integrated with the digital phone.

Cell phones also represent excellent examples of the application of mixed-signal inte-
grated circuits that contain both analog and digital circuitry on the same chip. ICs in the 
cell phone contain analog radio-frequency receiver and transmitter circuitry, analog-to-
digital and digital-to-analog converters, CMOS logic and memory, power conversion circuits, 
imaging chips, accelerometers, and more.

A decade of cellular phone evolution: (a) early Uniden “bag phone,” (b) Nokia analog phone, and (c) Apple iPhone.
Source: (a and b) Richard Jaeger; (c) Yalcin Sonat/Shutterstock

(a) (b) (c)

2  This assignment facilitates the use of Boolean algebra, reviewed in Chapter S6 of the eBook.

1.2 CLASSIFICATION OF ELECTRONIC SIGNALS
The signals that electronic devices are designed to process can be classified into two broad cat-
egories: analog and digital. Analog signals can take on a continuous range of values, and thus 
represent continuously varying quantities; purely digital signals can appear at only one of several 
discrete levels. Examples of these types of signals are described in more detail in the next two 
subsections, along with the concepts of digital-to-analog and analog-to-digital conversion, which 
make possible the interface between the two systems.

1.2.1 DIGITAL SIGNALS
When we speak of digital electronics, we are most often referring to electronic processing of 
binary digital signals, or signals that can take on only one of two discrete amplitude levels as 
illustrated in Fig. 1.6. The status of binary systems can be represented by two symbols: a logical 
1 is assigned to represent one level, and a logical 0 is assigned to the second level.      2   The two 
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logic states generally correspond to two separate voltages—  V  H    and   V  L   —representing the high and 
low amplitude levels, and a number of voltage ranges are in common use. Although   V  H   = 5  V 
and   V  L   = 0  V represented the primary standard for many years, these have given way to lower 
voltage levels because of power consumption and semiconductor device limitations. Systems employ-
ing   V  H   = 3.3 , down to 1 V or less with   V  L   = 0  V, are now used in many types of electronics.

However, binary voltage levels can also be negative or even bipolar. One high-performance 
logic family called ECL uses   V  H   = − 0.8  V and   V  L   = −2.0  V, and the early standard RS-422 and 
RS-232 communication links between a small computer and its peripherals used   V  H   = +12  V 
and   V  L   = −12  V. In addition, the time-varying binary signal in Fig. 1.6 could equally well rep-
resent the amplitude of a current or that of an optical signal being transmitted down a fiber in 
an optical digital communication system. Recent USB and similar standards returned to the use 
of a single positive supply voltage.

Detailed discussion of logic circuits that were included in earlier editions can now be found 
in Chapters S6–S9 of the e-book. These include PMOS, NMOS, and CMOS logic,      3   which use 
field-effect transistors, and the TTL and ECL families, which are based on bipolar transistors.

1.2.2 ANALOG SIGNALS
Although quantities such as electronic charge and electron spin or the position of a switch are 
discrete, much of the physical world is really analog in nature. Our senses of vision, hearing, 
smell, taste, and touch are all analog processes. Analog signals directly represent variables such 
as temperature, humidity, pressure, light intensity, or sound—all of which may take on any value, 
typically within some finite range. In practice, classification of digital and analog signals is largely 
one of perception. If we look at a digital signal similar to the one in Fig. 1.6 with an oscilloscope, 
we find that it actually makes a continuous transition between the high and low levels. The sig-
nal cannot make truly abrupt transitions between two levels. Designers of high-speed digital 
systems soon realize that they are really dealing with analog signals. The time-varying voltage 
or current plotted in Fig. 1.7(a) could be the electrical representation of temperature, flow rate, or 
pressure versus time, or the continuous audio output from a microphone. Some analog transducers 

3  For now, let us accept these initials as proper names without further definition. The details of each of these circuits are 
developed in Chapters S6–S9 of the eBook.

Amplitude

High

level

Low

level

1

0
t

Figure 1.6 A time-varying binary digital signal.

t

v(t) or i(t)

(a)

t

v(t) or i(t)

(b)

Figure 1.7 (a) A continuous analog signal; (b) sampled data version of signal in (a).
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